摘要:Diffuse large B-cell lymphoma (DLBCL) is commonly classified by gene expression profiling according to its cell of origin (COO) into activated B-cell (ABC)-like and germinal center B-cell (GCB)-like subgroups. Here we report the application of label-free nano-liquid chromatography - Sequential Window Acquisition of all THeoretical fragment-ion spectra – mass spectrometry (nanoLC-SWATH-MS) to the COO classification of DLBCL in formalin-fixed paraffin-embedded (FFPE) tissue. To generate a protein signature capable of predicting Affymetrix-based GCB scores, the summed log2-transformed fragment ion intensities of 780 proteins quantified in a training set of 42 DLBCL cases were used as independent variables in a penalized zero-sum elastic net regression model with variable selection. The eight-protein signature obtained showed an excellent correlation (r = 0.873) between predicted and true GCB scores and yielded only 9 (21.4%) minor discrepancies between the three classifications: ABC, GCB, and unclassified. The robustness of the model was validated successfully in two independent cohorts of 42 and 31 DLBCL cases, the latter cohort comprising only patients aged >75 years, with Pearson correlation coefficients of 0.846 and 0.815, respectively, between predicted and NanoString nCounter based GCB scores. We further show that the 8-protein signature is directly transferable to both a triple quadrupole and a Q Exactive quadrupole-Orbitrap mass spectrometer, thus obviating the need for proprietary instrumentation and reagents. This method may therefore be used for robust and competitive classification of DLBCLs on the protein level.