首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:MLR and ANN Approaches for Prediction of Synthetic/Natural Nanofibers Diameter in the Environmental and Medical Applications
  • 本地全文:下载
  • 作者:Saba Kalantary ; Ali Jahani ; Reza Jahani
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-65121-x
  • 出版社:Springer Nature
  • 摘要:Fiber diameter plays an important role in the properties of electrospinning of nanofibers. However, one major problem is the lack of a comprehensive method that can link processing parameters to nanofibers’ diameter. The objective of this study is to develope an artificial neural network (ANN) modeling and multiple regression (MLR) analysis approaches to predict the diameter of nanofibers. Processing parameters, including weight ratio, voltage, injection rate, and distance, were considered as independent variables and the nanofiber diameter as the dependent variable of the ANN model. The results of ANN modeling, especially its high accuracy (R2 = 0.959) in comparison with MLR results (R2 = 0.564), introduced the prediction the diameter of nanofibers model (PDNFM) as a comparative model for predicting the diameter of poly (3-caprolactone) (PCL)/gelatin (Gt) nanofibers. According to the result of sensitivity analysis of the model, the values of weight ratio, distance, injection rate, and voltage, respectively, were identified as the most significant parameters which influence PDNFM.
国家哲学社会科学文献中心版权所有