首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Protopanaxadiol ginsenoside Rd protects against NMDA receptor-mediated excitotoxicity by attenuating calcineurin-regulated DAPK1 activity
  • 本地全文:下载
  • 作者:Chen Zhang ; Xuedong Liu ; Hui Xu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-64738-2
  • 出版社:Springer Nature
  • 摘要:Neuroprotective strategies in the treatment of stroke have been attracting a great deal of attentions. Our previous clinical and basic studies have demonstrated that protopanaxadiol ginsenoside-Rd (Rd), a monomer compound extracted from Panax ginseng or Panax notoginseng, has neuroprotective effects against ischemic stroke, probably due to its ability to block Ca2 overload, an usual consequence of the overactivation of NMDA receptor (NMDAR). As an extending study, we explored here whether Rd exerted its neuroprotection as a novel NMDAR blocker. Our whole-cell patch-clamp results showed that Rd reduced NMDAR currents of cultured rat cortical neurons (EC50 = 7.7 μM) dose-dependently by acting on extrasynaptic NMDAR NR2b subunit. However, unexpectedly, cell transfection and radioligand binding assays revealed that Rd did not bind to the NMDAR channel directly. Alternatively, it inhibited the phosphorylation of NR2b at Ser-1303, a target of death associated protein kinase 1 (DAPK1). Moreover, cell-based and cell-free enzymatic assays showed that Rd did not inhibit the activity of DAPK1 directly, but blocked the activity of calcineurin, a key phosphatase for activating DAPK1. Importantly, other protopanaxadiol ginsenosides were also found to have potential inhibitory effects on calcineurin activity. Furthermore, as expected, calcineurin inhibition by cyclosporin A could mimic Rd’s effects and protect against NMDA-, oxygen glucose deprivation- or transient ischemic stroke-induced neuronal injury. Therefore, our present study provided the first evidence that Rd could exert an inhibitive effect on NMDAR-triggered currents and sequential excitotoxicity through mitigation of DAPK1-mediated NR2b phosphorylation by attenuating calcineurin activity.
国家哲学社会科学文献中心版权所有