摘要:We use multitemporal analyses based on Synthetic Aperture Radar differential interferometry (DInSAR) to study the slope adjacent to the large Punatsangchhu-I hydropower plant, a concrete gravity dam under construction in Bhutan since 2009. Several slope failures affected the site since 2013, probably as a consequence of toe undercutting of a previously unrecognised active landslide. Our results indicate that downslope displacement, likely related to the natural instability, was already visible in 2007 on various sectors of the entire valley flank. Moreover, the area with active displacements impinging on the dam site has continuously increased in size since 2007 and into 2018, even though stabilization measures have been implemented since 2013. Stabilisation measures currently only focus on a small portion of the slope, however, the unstable area is larger than previously evaluated. Highly damaged rock is present across many areas of the entire valley flank, indicating that the volumes involved may be orders of magnitude higher than the area on which stabilisation efforts have been concentrated after the 2013 failure. The results highlight that satellite-based DInSAR could be systematically used to support decision making processes in the different phases of a complex hydropower project, from the feasibility study, to the dam site selection and construction phase.