首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Geological controls of giant crater development on the Arctic seafloor
  • 本地全文:下载
  • 作者:Malin Waage ; Pavel Serov ; Karin Andreassen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-65018-9
  • 出版社:Springer Nature
  • 摘要:Active methane seepage occurs congruent with a high density of up to 1 km-wide and 35 m deep seafloor craters (>100 craters within 700 km2 area) within lithified sedimentary rocks in the northern Barents Sea. The crater origin has been hypothesized to be related to rapid gas hydrate dissociation and methane release around 15–12 ka BP, but the geological setting that enabled and possibly controlled the formation of craters has not yet been addressed. To investigate the geological setting beneath the craters in detail, we acquired high-resolution 3D seismic data. The data reveals that craters occur within ~250–230 Myr old fault zones. Fault intersections and fault planes typically define the crater perimeters. Mapping the seismic stratigraphy and fault displacements beneath the craters we suggest that the craters are fault-bounded collapse structures. The fault pattern controlled the craters occurrences, size and geometry. We propose that this Triassic fault system acted as a suite of methane migration conduits and was the prerequisite step for further seafloor deformations triggered by rapid gas hydrate dissociation some 15–12 ka BP. Similar processes leading to methane releases and fault bounded subsidence (crater-formation) may take place in areas where contemporary ice masses are retreating across faulted bedrocks with underlying shallow carbon reservoirs.
国家哲学社会科学文献中心版权所有