首页    期刊浏览 2024年07月18日 星期四
登录注册

文章基本信息

  • 标题:Time-resolved 3D imaging of two-phase fluid flow inside a steel fuel injector using synchrotron X-ray tomography
  • 本地全文:下载
  • 作者:Aniket Tekawade ; Brandon A. Sforzo ; Katarzyna E. Matusik
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-65701-x
  • 出版社:Springer Nature
  • 摘要:The multiphase flow inside a diesel injection nozzle is imaged using synchrotron X-rays from the Advanced Photon Source at Argonne National Laboratory. Through acquisitions performed at several viewing angles and subsequent tomographic reconstruction, in-situ 3D visualization is achieved for the first time inside a steel injector at engine-like operating conditions. The morphology of the internal flow reveals strong flow separation and vapor-filled cavities (cavitation), the degree of which correlates with the nozzle’s asymmetric inlet corner profile. Micron-scale surface features, which are artifacts of manufacturing, are shown to influence the morphology of the resulting liquid-gas interface. The data obtained at 0.1 ms time resolution exposes transient flow features and the flow development timescales are shown to be correlated with in-situ imaging of the fuel injector’s hydraulically-actuated valve (needle). As more than 98.5% of the X-ray photon flux is attenuated within the steel injector body itself, we are posed with a unique challenge for imaging the flow within. Time-resolved imaging under these low-light conditions is achieved by exploiting both the refractive and absorptive properties of X-ray photons. The data-processing strategy converted these images with a signal-to-noise ratio of ~ 10 into a meaningful dataset for understanding internal flow and cavitation in a nozzle of diameter 200 μm enclosed within 1–2 millimeters of steel.
国家哲学社会科学文献中心版权所有