首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Deep learning for irregularly and regularly missing data reconstruction
  • 本地全文:下载
  • 作者:Xintao Chai ; Hanming Gu ; Feng Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-18
  • DOI:10.1038/s41598-020-59801-x
  • 出版社:Springer Nature
  • 摘要:Deep learning (DL) is a powerful tool for mining features from data, which can theoretically avoid assumptions (e.g., linear events) constraining conventional interpolation methods. Motivated by this and inspired by image-to-image translation, we applied DL to irregularly and regularly missing data reconstruction with the aim of transforming incomplete data into corresponding complete data. To accomplish this, we established a model architecture with randomly sampled data as input and corresponding complete data as output, which was based on an encoder-decoder-style U-Net convolutional neural network. We carefully prepared the training data using synthetic and field seismic data. We used a mean-squared-error loss function and an Adam optimizer to train the network. We displayed the feature maps for a randomly sampled data set going through the trained model with the aim of explaining how the missing data are reconstructed. We benchmarked the method on several typical datasets for irregularly missing data reconstruction, which achieved better performances compared with a peer-reviewed Fourier transform interpolation method, verifying the effectiveness, superiority, and generalization capability of our approach. Because regularly missing is a special case of irregularly missing, we successfully applied the model to regularly missing data reconstruction, although it was trained with irregularly sampled data only.
国家哲学社会科学文献中心版权所有