摘要:In this paper, we have introduced and investigated an integrated optoelectronic chip for the up-conversion of mid-infrared to visible light. A thin layer of the nanocrystalline photoconductive PbSe is put on the Base of the NPN bipolar junction transistor and a doped phosphorescence organic light-emitting diode is placed on the Collector contacts. The incoming mid-infrared light is converted into an electric current by quantum dot photodetector, then amplified by the NPN bipolar junction transistor, and finally, the amplified current is driven through the Collector in the organic light-emitting diode. The organic light-emitting diode is designed to emit a green color. Our findings indicated that the proposed devices provide an up-conversion process from mid-infrared to visible light with a high-efficiency rate. The quantum dot photodetector is designed to detect 3 μm and also the organic light-emitting diode works at 523 nm. It is easy to tune the 3 ~ 5 μm incoming light by tuning the PbSe quantum dots, and the output light is tuned by tuning the organic light-emitting diode structure. Thus, the proposed structure is highly flexible regarding receiving mid-infrared and generating visible light. It is concluded that the external quantum efficiency for the proposed structure for 3 μm to 523 nm is 600. Also, the enhancement of the transistor current gain (β) can further increase the conversion efficiency of the proposed device. Moreover, different structures such as Darlington can be used instead of the bipolar junction transistor to enhance conversion efficiency.