摘要:To study the creep characteristics of mudstone under disturbed load, creep rock triaxial compression disturbance tests under different disturbance amplitudes and frequencies are conducted using a self-made triaxial disturbed creep test bench for rock. The influence of different factors on the creep deformation law of each stage is analyzed. The results show that the disturbance effect has a significant impact on the creep properties of mudstone, and various factors have different effects on the creep stages. The instantaneous deformation variable, creep decay time, and steady creep rate change exponentially with the increase in axial pressure, and increase linearly with the increase in disturbance amplitude and disturbance frequency. The disturbance amplitude has a more significant effect on the instantaneous deformation, steady-state creep rate, and accelerated creep. According to the analysis of the test results, a nonlinear disturbance creep damage model based on Burger’s model is established. The model is identified and calculated by the improved least squares method based on pattern search. The influence of different disturbance factors on the creep parameters is analyzed. The model fitting results and experimental results are compared to demonstrate that the model is used to simulate different disturbances. It was observed that rock creep under certain conditions exhibits certain adaptability. It is of great significance to carry out rock disturbance creep experiments and study the theory of disturbance creep to ensure the long-term stability of deep rock mass in complex environment.