首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:BacEffluxPred: A two-tier system to predict and categorize bacterial efflux mediated antibiotic resistance proteins
  • 本地全文:下载
  • 作者:Deeksha Pandey ; Bandana Kumari ; Neelja Singhal
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-65981-3
  • 出版社:Springer Nature
  • 摘要:Efflux proteins are transport proteins, which are involved in transporting different substrates from the cell to the external environment, including antibiotics. The efflux mechanism and efflux pumps are a major reason underlying emerging rampant antibiotic resistance (AR) in microbes. To reduce the resources required and time of identification, characterization and classification of bacterial efflux proteins, we have developed a fast and accurate support vector machine based two-tier prediction system, BacEffluxPred, which can predict bacterial efflux proteins responsible for AR and identify their corresponding families. A leave-one-out cross-validation also called jackknife procedure was used for performance evaluation. The accuracy to discriminate bacterial AR efflux from non-AR efflux was obtained as 85.81% (at tier-I) while accuracies for prediction of efflux pump families like ABC, MFS, RND and MATE family were found 92.13%, 85.39%, 91.01% and 99.44%, respectively (at tier-II). Benchmarking on an independent dataset also showed that BacEffluxPred had comparable accuracy for prediction of bacterial AR efflux pumps and their families. This is the first in-silico tool for predicting bacterial AR efflux proteins and their families and is freely available as both web-server and standalone versions at http://proteininformatics.org/mkumar/baceffluxpred/.
国家哲学社会科学文献中心版权所有