首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Density functional theory studies on cytosine analogues for inducing double-proton transfer with guanine
  • 本地全文:下载
  • 作者:Jinjie Xue ; Xingping Guo ; Xingbao Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-66530-8
  • 出版社:Springer Nature
  • 摘要:To induce double-proton transfer (DPT) with guanine in a biological environment, 12 cytosine analogues (Ca) were formed by atomic substitution. The DPT reactions in the Watson–Crick cytosine–guanine model complex (Ca0G) and 12 modified cytosine–guanine complexes (Ca1-12G) were investigated using density functional theory methods at the M06-2X/def2svp level. The intramolecular proton transfers within the analogues are not facile due to high energy barriers. The hydrogen bond lengths of the Ca1-12G complexes are shorter than those in the Ca0G complex, which are conducive to DPT reactions. The DPT energy barriers of Ca1-12G complexes are also lower than that of the Ca0G complex, in particular, the barriers in the Ca7G and Ca11G complexes were reduced to −1.33 and −2.02 kcal/mol, respectively, indicating they are significantly more prone to DPT reactions. The DPT equilibrium constants of Ca1-12G complexes range from 1.60 × 100 to 1.28 × 107, among which the equilibrium constants of Ca7G and Ca11G are over 1.0 × 105, so their DPT reactions may be adequate. The results demonstrate that those cytosine analogues, especially Ca7 and Ca11, are capable of inducing DPT with guanine, and then the guanine tautomer will form mismatches with thymine during DNA replication, which may provide new strategies for gene therapy.
国家哲学社会科学文献中心版权所有