首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Effect of nitrogen (N) deposition on soil-N processes: a holistic approach
  • 本地全文:下载
  • 作者:Preeti Verma ; R. Sagar
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-16
  • DOI:10.1038/s41598-020-67368-w
  • 出版社:Springer Nature
  • 摘要:Nitrogen (N) deposition is a serious environmental issue for soil fertility and human wellbeing. Studies on various terrestrial ecosystems yielded fragmented information on soil-N status (microbial biomass- and mineral-N) and dynamics (N-mineralization and -leaching) whereas the holistic view on this issue is relatively unknown. A complete understanding of soil-N status and dynamics in response to N deposition is essential for sustainable management of ecosystem structure and function as needed for human wellbeing. Therefore, we conducted an experiment in the N-limited tropical grassland to explore the question whether N-deposition weakens the soil-N status and dynamics; if yes, then what could be the optimum amount of deposited N and the related controlling mechanism? We undertook a 3-year (2013–2016) experimental N fertilization (control, 30, 60, 90, 120, and 150 kg N ha−1 year−1) study (using urea as a source of N deposition). The data from a total of 72, 1 × 1 m plots (six treatments with 12 replicates) were collected and properly analysed with statistical software. N deposition caused significant differences in the parameters of soil-N status and dynamics. The responses of microbial biomass-N, N-mineralization, and mineral-N to the N deposition were quadratic (maximum values were in N90) whereas N-leaching showed a linear response. Compared to control, N deposition (30–150 kg N) consistently enhanced (29–96%) leaching of N. As a mechanism, acidification induced aluminium toxicity, carbon to nitrogen ratio and litter decomposition governed the soil-N status and dynamics. N deposition over and above 90 kg ha−1 year−1 resulted in a negative feedback to soil N transformation and availability. Hence, N deposition below 90 kg ha−1 year−1 could be a limit for the sustainable functioning of the tropical or similar grasslands.
国家哲学社会科学文献中心版权所有