首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Innovative multifunctional hybrid photoelectrode design based on a ternary heterojunction with super-enhanced efficiency for artificial photosynthesis
  • 本地全文:下载
  • 作者:Wayler S. dos Santos ; Éder J. Carmo ; Yanela Mendez-González
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-67768-y
  • 出版社:Springer Nature
  • 摘要:Electrochemical cells for direct conversion of solar energy to electricity (or hydrogen) are one of the most sustainable solutions to meet the increasing worldwide energy demands. In this report, a novel and highly-efficient ternary heterojunction-structured Bi4O7/Bi3.33(VO4)2O2/Bi46V8O89 photoelectrode is presented. It is demonstrated that the combination of an inversion layer, induced by holes (or electrons) at the interface of the semiconducting Bi3.33(VO4)2O2 and Bi46V8O89 components, and the rectifying contact between the Bi4O7 and Bi3.33(VO4)2O2 phases acting afterward as a conventional p–n junction, creates an adjustable virtual p–n–p or n–p–n junction due to self-polarization in the ion-conducting Bi46V8O89 constituent. This design approach led to anodic and cathodic photocurrent densities of   38.41 mA cm–2 (  0.76 VRHE) and– 2.48 mA cm–2 (0 VRHE), respectively. Accordingly, first, this heterojunction can be used either as photoanode or as photocathode with great performance for artificial photosynthesis, noting, second, that the anodic response reveals exceptionally high: more than 300% superior to excellent values previously reported in the literature.
国家哲学社会科学文献中心版权所有