首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Mesoporous ZnAl 2 Si 10 O 24 nanofertilizers enable high yield of Oryza sativa L.
  • 本地全文:下载
  • 作者:Fizza Naseem ; Yang Zhi ; Muhammad Akhyar Farrukh
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-67611-4
  • 出版社:Springer Nature
  • 摘要:Controllable release of nutrients in soil can overcome the environmental problems associated with conventional fertilizer. Here we synthesized mesoporous nanocomposite of Zinc aluminosilicate (ZnAl2Si10O24) via co-precipitation method. Oryza sativa L. husk was used as source of silica for making the synthesis process green and economical. The nanocomposite was subsequently loaded with urea to achieve the demand of simultaneous and slow delivery of both zinc and urea. The structural characterization of nanocomposite was done by FTIR, XRD, TGA, BET, SEM/EDX and TEM. The release of urea and zinc was investigated with UV–Vis spectrophotometry and atomic absorption spectroscopy, respectively, up to 14 days. It was noted that urea holding capacity of mesoporous ZnAl2Si10O24 nanocomposite over long period of time was increased as compared to bulk aluminosilicates, due to its high surface area (193.07 m2 g−1) and small particle size of (64 nm). Urea release was found highest in first 24 h because of excess of adsorption on nanocomposite and least at 14th day. Fertilizer efficiency was checked on Oryza sativa L. in comparison with commercial urea and results showed significantly higher yield in case of urea loaded ZnAl2Si10O24 nanocomposite.
国家哲学社会科学文献中心版权所有