首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Oxidative stress evaluation of skeletal muscle in ischemia–reperfusion injury using enhanced magnetic resonance imaging
  • 本地全文:下载
  • 作者:Yoshinori Kuroda ; Hitoshi Togashi ; Tetsuro Uchida
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-67336-4
  • 出版社:Springer Nature
  • 摘要:Acute extremity arterial occlusion requires prompt revascularization. Delayed revascularization induces ischemia–reperfusion injury in the skeletal muscle. Organ injury-induced oxidative stress is widely reported, and oxidative stress is heavily involved in ischemia–reperfusion injury. This study aimed to evaluate oxidative stress in ischemia–reperfusion rat models using 3-carbamoyl PROXYL enhanced magnetic resonance imaging (3-CP enhanced MRI). Ischemia–reperfusion injury was induced through clamping the right femoral artery in rats, with a 4-h ischemia time in all experiments. 3-CP enhanced MRI was performed to evaluate oxidative stress, and the rats were divided into 3 reperfusion time groups: 0.5, 2, and 24 h. Signal intensity was evaluated using 3-CP enhanced MRI and compared in the ischemia–reperfusion and intact limbs in the same rat. Furthermore, the effect of edaravone (radical scavenger) was evaluated in the 4-h ischemia—24-h reperfusion injury rat model. The signal intensity of the ischemia–reperfusion limb was significantly stronger than that of the intact limb, suggesting that oxidative stress was induced in the ischemia–reperfusion muscle. Edaravone administration reduced the oxidative stress in the ischemia–reperfusion limb. The signal intensity of the ischemia–reperfusion limb was stronger than that of the intact limb, presumably reflecting the oxidative stress in the former. 3-CP MRI examination shows promise for effective assessment of oxidative stress and may facilitate early diagnosis of ischemia–reperfusion injury.
国家哲学社会科学文献中心版权所有