首页    期刊浏览 2025年07月04日 星期五
登录注册

文章基本信息

  • 标题:Recursive Consensus Clustering for novel subtype discovery from transcriptome data
  • 本地全文:下载
  • 作者:Pranali Sonpatki ; Nameeta Shah
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-16
  • DOI:10.1038/s41598-020-67016-3
  • 出版社:Springer Nature
  • 摘要:Large-scale transcriptomic data is used by biologists for the discovery of new molecular patterns or cell subpopulations. Clustering is one of the most popular methods for dimensionality reduction and data analysis for large scale datasets. The major problem while clustering the data is the selection of the optimal number of clusters (k) for each dataset and to discover new insights from it. We have developed Recursive Consensus Clustering (RCC), an unsupervised clustering algorithm for novel subtype discovery from both bulk and single-cell datasets. RCC is available as an R package and facilitates the generation of new biological insights through intuitive visualization of clustering results.
国家哲学社会科学文献中心版权所有