首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Synthesis of mesoporous SnO 2 /NiO nanocomposite using modified sol–gel method and its electrochemical performance as electrode material for supercapacitors
  • 本地全文:下载
  • 作者:Bhaskar Varshney ; M. J. Siddiqui ; A. Hakeem Anwer
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-67990-8
  • 出版社:Springer Nature
  • 摘要:In this research work, SnO2, NiO and SnO2/NiO nanocomposites were synthesized at low temperature by modified sol–gel method using ultrasonication. Prepared samples were investigated for their properties employing various characterization techniques. X-ray diffraction (XRD) patterns confirmed the purity and phase of the samples as no secondary phase was detected. The average crystallite size of the nanocomposites was found to decrease from 19.24 to 4.53 nm with the increase in NiO concentration. It was confirmed from SEM micrographs that the material has mesoporous morphology. This mesoporous morphology resulted in the increase of the surface to mass ratio of the material, which in turn increases the specific capacitance of the material. The UV–Visible spectra showed the variation in the band gap of SnO2/NiO at different weight ratio ranging from 3.49 to 3.25 eV on increasing NiO concentration in the samples. These composites with different mass ratio of SnO2 and NiO were also characterized by FT-IR spectroscopy that showed shifting of the peaks centered at 545 cm−1 in the spectra for NiO/SnO2 nanocomposite. The analysis of the electrochemical performance of the material was done with the help of cyclic voltammetry and Galvanostatic charge–discharge. The specific capacitance of the synthesized samples with different concentration of SnO2 and NiO was analyzed at different scan rates of 5 to 100 mV/s. Interestingly, 7:1 mass ratio of NiO and SnO2 (SN7) nanocomposite exhibited a maximum specific capacitance of ~ 464 F/g at a scan rate of 5 mV/s and good capacitance retention of 87.24% after 1,000 cycles. These excellent electrochemical properties suggest that the SnO2/NiO nanocomposite can be used for high energy density supercapacitor electrode material.
国家哲学社会科学文献中心版权所有