首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Identification of neural networks preferentially engaged by epileptogenic mass lesions through lesion network mapping analysis
  • 本地全文:下载
  • 作者:Alireza M. Mansouri ; Jürgen Germann ; Alexandre Boutet
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-67626-x
  • 出版社:Springer Nature
  • 摘要:Lesion network mapping (LNM) has been applied to true lesions (e.g., cerebrovascular lesions in stroke) to identify functionally connected brain networks. No previous studies have utilized LNM for analysis of intra-axial mass lesions. Here, we implemented LNM for identification of potentially vulnerable epileptogenic networks in mass lesions causing medically-refractory epilepsy (MRE). Intra-axial brain lesions were manually segmented in patients with MRE seen at our institution (EL_INST). These lesions were then normalized to standard space and used as seeds in a high-resolution normative resting state functional magnetic resonance imaging template. The resulting connectivity maps were first thresholded (pBonferroni_cor 2.0); canonical resting-state networks preferentially engaged by EL_INSTs were the Limbic and the Frontoparietal Networks (Mean VOR > 1.5). In this proof of concept study, we demonstrate the feasibility of LNM for intra-axial mass lesions by showing that ELs have discrete functional connections and may preferentially engage in discrete resting-state networks. Thus, the underlying normative neural circuitry may, in part, explain the propensity of particular lesions toward the development of MRE. If prospectively validated, this has ramifications for patient counseling along with both approach and timing of surgery for lesions in locations prone to development of MRE.
国家哲学社会科学文献中心版权所有