首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:DA-CapsNet: dual attention mechanism capsule network
  • 本地全文:下载
  • 作者:Wenkai Huang ; Fobao Zhou
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-68453-w
  • 出版社:Springer Nature
  • 摘要:A capsule network (CapsNet) is a recently proposed neural network model with a new structure. The purpose of CapsNet is to form activation capsules. In this paper, our team proposes a dual attention mechanism capsule network (DA-CapsNet). In DA-CapsNet, the first layer of the attention mechanism is added after the convolution layer and is referred to as Conv-Attention; the second layer is added after the PrimaryCaps and is referred to as Caps-Attention. The experimental results show that DA-CapsNet performs better than CapsNet. For MNIST, the trained DA-CapsNet is tested in the testset, the accuracy of the DA-CapsNet is 100% after 8 epochs, compared to 25 epochs for CapsNet. For SVHN, CIFAR10, FashionMNIST, smallNORB, and COIL-20, the highest accuracy of DA-CapsNet was 3.46%, 2.52%, 1.57%, 1.33% and 1.16% higher than that of CapsNet. And the results of image reconstruction in COIL-20 show that DA-CapsNet has a more competitive performance than CapsNet.
国家哲学社会科学文献中心版权所有