摘要:OBJECTIVES :To study the effects of a self-powered Fontan circulation in both idealized Fontan models and patient-specific models. METHODS :In silico, a conduit with a nozzle was introduced from ascending aorta into the anastomosis of superior vena cava and pulmonary artery. Computational fluid dynamics (CFD) simulation was applied to calculate the fluid fields of models. Three 3-dimentional idealized models with different offsets were reconstructed by computer-aided design to evaluate the effects of the self-powered conduit. Furthermore, to validate the effects in patient-specific models, the conduit was introduced to three reconstructed models with different offsets. RESULTS :The pressures at superior venae cavae and inferior venae cavae were decreased in both idealized models (0.4 mmHg) and patient-specific models (0.7 mmHg). In idealized models, the flows to left lungs were decreased (70%) by the jets from the conduits. However, in patient-specific models, the reductions of blood to the left lungs were relatively limited (30%) comparing to idealized models. CONCLUSIONS :CFD simulation was applied to analyze the effectiveness of the Fontan self-powered conduit. This self-powered conduit may help to decrease the venae cavae pressures and increase the flow to pulmonary arteries.