首页    期刊浏览 2024年09月16日 星期一
登录注册

文章基本信息

  • 标题:Air pollution impairs recovery and tissue remodeling in a murine model of acute lung injury
  • 本地全文:下载
  • 作者:Natália de Souza Xavier Costa ; Gabriel Ribeiro Júnior ; Adair Aparecida dos Santos Alemany
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-72130-3
  • 出版社:Springer Nature
  • 摘要:Evidence regarding the impact of air pollution on acute respiratory distress syndrome (ARDS) is limited, and most studies focus on ARDS onset. Our study aimed to evaluate whether exposure to fine particulate matter interferes with lung recovery and remodeling in a murine model of acute lung injury. Forty-eight mice received nebulized LPS or the vehicle (controls). Blood, BALF, lungs and spleen were collected after 5 weeks of exposure to either PM2.5 (PM and LPS   PM group) or filtered air (control and LPS5w groups). Inflammatory cells and cytokines were assessed in the blood, BALF, lungs and spleen. Stereological analyses and remodeling assessments were performed by histology. The LPS   PM group showed increased BALF leukocytes, characterized by increased macrophages, increased IL-1β and IL-6 levels, anemia and thrombocytopenia. Moreover, we also observed septal thickening, decreased alveolar air space total volume and, septa surface density. Finally, regarding tissue remodeling, we observed elastosis of the lung parenchyma, and unlike in the LPS5w group, we did not observe fibrosis in the LPS   PM group. In conclusion, the delayed inflammation resolution due to subchronic exposure to PM2.5 could be influenced by low systemic and local lymphocyte counts, which lead to impaired lung injury recovery and tissue remodeling.
  • 其他摘要:Abstract Evidence regarding the impact of air pollution on acute respiratory distress syndrome (ARDS) is limited, and most studies focus on ARDS onset. Our study aimed to evaluate whether exposure to fine particulate matter interferes with lung recovery and remodeling in a murine model of acute lung injury. Forty-eight mice received nebulized LPS or the vehicle (controls). Blood, BALF, lungs and spleen were collected after 5 weeks of exposure to either PM 2.5 (PM and LPS   PM group) or filtered air (control and LPS5w groups). Inflammatory cells and cytokines were assessed in the blood, BALF, lungs and spleen. Stereological analyses and remodeling assessments were performed by histology. The LPS   PM group showed increased BALF leukocytes, characterized by increased macrophages, increased IL-1β and IL-6 levels, anemia and thrombocytopenia. Moreover, we also observed septal thickening, decreased alveolar air space total volume and, septa surface density. Finally, regarding tissue remodeling, we observed elastosis of the lung parenchyma, and unlike in the LPS5w group, we did not observe fibrosis in the LPS   PM group. In conclusion, the delayed inflammation resolution due to subchronic exposure to PM 2.5 could be influenced by low systemic and local lymphocyte counts, which lead to impaired lung injury recovery and tissue remodeling.
国家哲学社会科学文献中心版权所有