首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Generalized entropies, density of states, and non-extensivity
  • 本地全文:下载
  • 作者:Sámuel G. Balogh ; Gergely Palla ; Péter Pollner
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-72422-8
  • 出版社:Springer Nature
  • 摘要:The concept of entropy connects the number of possible configurations with the number of variables in large stochastic systems. Independent or weakly interacting variables render the number of configurations scale exponentially with the number of variables, making the Boltzmann–Gibbs–Shannon entropy extensive. In systems with strongly interacting variables, or with variables driven by history-dependent dynamics, this is no longer true. Here we show that contrary to the generally held belief, not only strong correlations or history-dependence, but skewed-enough distribution of visiting probabilities, that is, first-order statistics, also play a role in determining the relation between configuration space size and system size, or, equivalently, the extensive form of generalized entropy. We present a macroscopic formalism describing this interplay between first-order statistics, higher-order statistics, and configuration space growth. We demonstrate that knowing any two strongly restricts the possibilities of the third. We believe that this unified macroscopic picture of emergent degrees of freedom constraining mechanisms provides a step towards finding order in the zoo of strongly interacting complex systems.
  • 其他摘要:Abstract The concept of entropy connects the number of possible configurations with the number of variables in large stochastic systems. Independent or weakly interacting variables render the number of configurations scale exponentially with the number of variables, making the Boltzmann–Gibbs–Shannon entropy extensive. In systems with strongly interacting variables, or with variables driven by history-dependent dynamics, this is no longer true. Here we show that contrary to the generally held belief, not only strong correlations or history-dependence, but skewed-enough distribution of visiting probabilities, that is, first-order statistics, also play a role in determining the relation between configuration space size and system size, or, equivalently, the extensive form of generalized entropy. We present a macroscopic formalism describing this interplay between first-order statistics, higher-order statistics, and configuration space growth. We demonstrate that knowing any two strongly restricts the possibilities of the third. We believe that this unified macroscopic picture of emergent degrees of freedom constraining mechanisms provides a step towards finding order in the zoo of strongly interacting complex systems.
国家哲学社会科学文献中心版权所有