首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Inhibition of enteric methanogenesis in dairy cows induces changes in plasma metabolome highlighting metabolic shifts and potential markers of emission
  • 本地全文:下载
  • 作者:Bénédict Yanibada ; Ulli Hohenester ; Mélanie Pétéra
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-72145-w
  • 出版社:Springer Nature
  • 摘要:There is scarce information on whether inhibition of rumen methanogenesis induces metabolic changes on the host ruminant. Understanding these possible changes is important for the acceptance of methane-reducing practices by producers. In this study we explored the changes in plasma profiles associated with the reduction of methane emissions. Plasma samples were collected from lactating primiparous Holstein cows fed the same diet with (Treated, n = 12) or without (Control, n = 13) an anti-methanogenic feed additive for six weeks. Daily methane emissions (CH4, g/d) were reduced by 23% in the Treated group with no changes in milk production, feed intake, body weight, and biochemical indicators of health status. Plasma metabolome analyses were performed using untargeted [nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC–MS)] and targeted (LC–MS/MS) approaches. We identified 48 discriminant metabolites. Some metabolites mainly of microbial origin such as dimethylsulfone, formic acid and metabolites containing methylated groups like stachydrine, can be related to rumen methanogenesis and can potentially be used as markers. The other discriminant metabolites are produced by the host or have a mixed microbial-host origin. These metabolites, which increased in treated cows, belong to general pathways of amino acids and energy metabolism suggesting a systemic non-negative effect on the animal.
  • 其他摘要:Abstract There is scarce information on whether inhibition of rumen methanogenesis induces metabolic changes on the host ruminant. Understanding these possible changes is important for the acceptance of methane-reducing practices by producers. In this study we explored the changes in plasma profiles associated with the reduction of methane emissions. Plasma samples were collected from lactating primiparous Holstein cows fed the same diet with (Treated, n = 12) or without (Control, n = 13) an anti-methanogenic feed additive for six weeks. Daily methane emissions (CH 4 , g/d) were reduced by 23% in the Treated group with no changes in milk production, feed intake, body weight, and biochemical indicators of health status. Plasma metabolome analyses were performed using untargeted [nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC–MS)] and targeted (LC–MS/MS) approaches. We identified 48 discriminant metabolites. Some metabolites mainly of microbial origin such as dimethylsulfone, formic acid and metabolites containing methylated groups like stachydrine, can be related to rumen methanogenesis and can potentially be used as markers. The other discriminant metabolites are produced by the host or have a mixed microbial-host origin. These metabolites, which increased in treated cows, belong to general pathways of amino acids and energy metabolism suggesting a systemic non-negative effect on the animal.
国家哲学社会科学文献中心版权所有