首页    期刊浏览 2025年06月05日 星期四
登录注册

文章基本信息

  • 标题:SERRS multiplexing with multivalent nanostructures for the identification and enumeration of epithelial and mesenchymal cells
  • 本地全文:下载
  • 作者:Lucio Litti ; Andrea Colusso ; Marcella Pinto
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-72911-w
  • 出版社:Springer Nature
  • 摘要:Liquid biopsy represents a new frontier of cancer diagnosis and prognosis, which allows the isolation of tumor cells released in the blood stream. The extremely low abundance of these cells needs appropriate methodologies for their identification and enumeration. Herein we present a new protocol based on surface enhanced resonance Raman scattering (SERRS) gold multivalent nanostructures to identify and enumerate tumor cells with epithelial and mesenchimal markers. The validation of the protocol is obtained with spiked samples of peripheral blood mononuclear cells (PBMC). Gold nanostructures are functionalized with SERRS labels and with antibodies to link the tumor cells. Three types of such nanosystems were simultaneously used and the protocol allows obtaining the identification of all individual tumor cells with the help of a Random Forest ensemble learning method.
  • 其他摘要:Abstract Liquid biopsy represents a new frontier of cancer diagnosis and prognosis, which allows the isolation of tumor cells released in the blood stream. The extremely low abundance of these cells needs appropriate methodologies for their identification and enumeration. Herein we present a new protocol based on surface enhanced resonance Raman scattering (SERRS) gold multivalent nanostructures to identify and enumerate tumor cells with epithelial and mesenchimal markers. The validation of the protocol is obtained with spiked samples of peripheral blood mononuclear cells (PBMC). Gold nanostructures are functionalized with SERRS labels and with antibodies to link the tumor cells. Three types of such nanosystems were simultaneously used and the protocol allows obtaining the identification of all individual tumor cells with the help of a Random Forest ensemble learning method.
国家哲学社会科学文献中心版权所有