首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Identifying volatile organic compounds used for olfactory navigation by homing pigeons
  • 本地全文:下载
  • 作者:Nora Zannoni ; Martin Wikelski ; Anna Gagliardo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-16
  • DOI:10.1038/s41598-020-72525-2
  • 出版社:Springer Nature
  • 摘要:Many bird species have the ability to navigate home after being brought to a remote, even unfamiliar location. Environmental odours have been demonstrated to be critical to homeward navigation in over 40 years of experiments, yet the chemical identity of the odours has remained unknown. In this study, we investigate potential chemical navigational cues by measuring volatile organic compounds (VOCs): at the birds’ home-loft; in selected regional forest environments; and from an aircraft at 180 m. The measurements showed clear regional, horizontal and vertical spatial gradients that can form the basis of an olfactory map for marine emissions (dimethyl sulphide, DMS), biogenic compounds (terpenoids) and anthropogenic mixed air (aromatic compounds), and temporal changes consistent with a sea-breeze system. Air masses trajectories are used to examine GPS tracks from released birds, suggesting that local DMS concentrations alter their flight directions in predictable ways. This dataset reveals multiple regional-scale real-world chemical gradients that can form the basis of an olfactory map suitable for homing pigeons.
  • 其他摘要:Abstract Many bird species have the ability to navigate home after being brought to a remote, even unfamiliar location. Environmental odours have been demonstrated to be critical to homeward navigation in over 40 years of experiments, yet the chemical identity of the odours has remained unknown. In this study, we investigate potential chemical navigational cues by measuring volatile organic compounds (VOCs): at the birds’ home-loft; in selected regional forest environments; and from an aircraft at 180 m. The measurements showed clear regional, horizontal and vertical spatial gradients that can form the basis of an olfactory map for marine emissions (dimethyl sulphide, DMS), biogenic compounds (terpenoids) and anthropogenic mixed air (aromatic compounds), and temporal changes consistent with a sea-breeze system. Air masses trajectories are used to examine GPS tracks from released birds, suggesting that local DMS concentrations alter their flight directions in predictable ways. This dataset reveals multiple regional-scale real-world chemical gradients that can form the basis of an olfactory map suitable for homing pigeons.
国家哲学社会科学文献中心版权所有