首页    期刊浏览 2025年12月05日 星期五
登录注册

文章基本信息

  • 标题:A simple procedure for bacterial expression and purification of the fragile X protein family
  • 本地全文:下载
  • 作者:Madison Edwards ; Mingzhi Xu ; Simpson Joseph
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-15
  • DOI:10.1038/s41598-020-72984-7
  • 出版社:Springer Nature
  • 摘要:The fragile X protein family consists of three RNA-binding proteins involved in translational regulation. Fragile X mental retardation protein (FMRP) is well-studied, as its loss leads to fragile X syndrome, a neurodevelopmental disorder which is the most prevalent form of inherited mental retardation and the primary monogenetic cause of autism. Fragile X related proteins 1 and 2 (FXR1P and FXR2P) are autosomal paralogs of FMRP that are involved in promoting muscle development and neural development, respectively. There is great interest in studying this family of proteins, yet researchers have faced much difficulty in expressing and purifying the full-length versions of these proteins in sufficient quantities. We have developed a simple, rapid, and inexpensive procedure that allows for the recombinant expression and purification of full-length human FMRP, FXR1P, and FXR2P from Escherichia coli in high yields, free of protein and nucleic acid contamination. In order to assess the proteins’ function after purification, we confirmed their binding to pseudoknot and G-quadruplex forming RNAs as well as their ability to regulate translation in vitro.
  • 其他摘要:Abstract The fragile X protein family consists of three RNA-binding proteins involved in translational regulation. Fragile X mental retardation protein (FMRP) is well-studied, as its loss leads to fragile X syndrome, a neurodevelopmental disorder which is the most prevalent form of inherited mental retardation and the primary monogenetic cause of autism. Fragile X related proteins 1 and 2 (FXR1P and FXR2P) are autosomal paralogs of FMRP that are involved in promoting muscle development and neural development, respectively. There is great interest in studying this family of proteins, yet researchers have faced much difficulty in expressing and purifying the full-length versions of these proteins in sufficient quantities. We have developed a simple, rapid, and inexpensive procedure that allows for the recombinant expression and purification of full-length human FMRP, FXR1P, and FXR2P from Escherichia coli in high yields, free of protein and nucleic acid contamination. In order to assess the proteins’ function after purification, we confirmed their binding to pseudoknot and G-quadruplex forming RNAs as well as their ability to regulate translation in vitro.
国家哲学社会科学文献中心版权所有