首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:SV-HotSpot: detection and visualization of hotspots targeted by structural variants associated with gene expression
  • 本地全文:下载
  • 作者:Abdallah M. Eteleeb ; David A. Quigley ; Shuang G. Zhao
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-71168-7
  • 出版社:Springer Nature
  • 摘要:Whole genome sequencing (WGS) has enabled the discovery of genomic structural variants (SVs), including those targeting intergenic and intronic non-coding regions that eluded previous exome focused strategies. However, the field currently lacks an automated tool that analyzes SV candidates to identify recurrent SVs and their targeted sites (hotspot regions), visualizes these genomic events within the context of various functional elements, and evaluates their potential effect on gene expression. To address this, we developed SV-HotSpot, an automated tool that integrates SV candidates, copy number alterations, gene expression, and genome annotations (e.g. gene and regulatory elements) to discover, annotate, and visualize recurrent SVs and their targeted hotspot regions that may affect gene expression. We applied SV-HotSpot to WGS and matched transcriptome data from metastatic castration resistant prostate cancer patients and rediscovered recurrent SVs targeting coding and non-coding functional elements known to promote prostate cancer progression and metastasis. SV-HotSpot provides a valuable resource to integrate SVs, gene expression, and genome annotations for discovering biologically relevant SVs altering coding and non-coding genome. SV-HotSpot is available at https://github.com/ChrisMaherLab/SV-HotSpot .
  • 其他摘要:Abstract Whole genome sequencing (WGS) has enabled the discovery of genomic structural variants (SVs), including those targeting intergenic and intronic non-coding regions that eluded previous exome focused strategies. However, the field currently lacks an automated tool that analyzes SV candidates to identify recurrent SVs and their targeted sites (hotspot regions), visualizes these genomic events within the context of various functional elements, and evaluates their potential effect on gene expression. To address this, we developed SV-HotSpot, an automated tool that integrates SV candidates, copy number alterations, gene expression, and genome annotations (e.g. gene and regulatory elements) to discover, annotate, and visualize recurrent SVs and their targeted hotspot regions that may affect gene expression. We applied SV-HotSpot to WGS and matched transcriptome data from metastatic castration resistant prostate cancer patients and rediscovered recurrent SVs targeting coding and non-coding functional elements known to promote prostate cancer progression and metastasis. SV-HotSpot provides a valuable resource to integrate SVs, gene expression, and genome annotations for discovering biologically relevant SVs altering coding and non-coding genome. SV-HotSpot is available at https://github.com/ChrisMaherLab/SV-HotSpot .
国家哲学社会科学文献中心版权所有