摘要:Repeated blood pressure (BP) measurements allow better control of hypertension. Current measurements rely on cuff-based devices. The aim of the present study was to compare BP measurements using a novel cuff-less photoplethysmography-based device to a standard sphygmomanometer device. Males and females were recruited from within the general population who arrived at a public BP screening station. One to two measurements were taken from each using a sphygmomanometer-based and the photoplethysmography-based devices. Devices were considered equal if the mean difference between paired measurements was below 5 mmHg and the Standard Deviation (SD) was no greater than 8 mmHg. Agreement and reliability analyses were also performed. 1057 subjects were included in the study analysis. There were no adverse events during the study. The mean (± SD) difference between paired measurements for all subjects was -0.1 ± 3.6 mmHg for the systolic and 0.0 ± 3.5 mmHg for the diastolic readings. We found 96.31% agreement in identifying hypertension and an Interclass Correlation Coefficient of 0.99 and 0.97 for systolic and diastolic measurements, respectively. The photoplethysmography-based device was found similar to the gold-standard sphygmomanometer-based device with high agreement and reliability levels. The device might enable a reliable, more convenient method for repeated BP monitoring.
其他摘要:Abstract Repeated blood pressure (BP) measurements allow better control of hypertension. Current measurements rely on cuff-based devices. The aim of the present study was to compare BP measurements using a novel cuff-less photoplethysmography-based device to a standard sphygmomanometer device. Males and females were recruited from within the general population who arrived at a public BP screening station. One to two measurements were taken from each using a sphygmomanometer-based and the photoplethysmography-based devices. Devices were considered equal if the mean difference between paired measurements was below 5 mmHg and the Standard Deviation (SD) was no greater than 8 mmHg. Agreement and reliability analyses were also performed. 1057 subjects were included in the study analysis. There were no adverse events during the study. The mean (± SD) difference between paired measurements for all subjects was -0.1 ± 3.6 mmHg for the systolic and 0.0 ± 3.5 mmHg for the diastolic readings. We found 96.31% agreement in identifying hypertension and an Interclass Correlation Coefficient of 0.99 and 0.97 for systolic and diastolic measurements, respectively. The photoplethysmography-based device was found similar to the gold-standard sphygmomanometer-based device with high agreement and reliability levels. The device might enable a reliable, more convenient method for repeated BP monitoring.