首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:CO oxidation and organic dyes degradation over graphene–Cu and graphene–CuNi catalysts obtained by solution combustion synthesis
  • 本地全文:下载
  • 作者:Alexander Khort ; Valentin Romanovski ; Denis Leybo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-72872-0
  • 出版社:Springer Nature
  • 摘要:Graphene and its analogs in combination with metal nanopowders are among the most promising catalysts for various industry valuable processes. The newly obtained solution combustion synthesized graphene–Cu and graphene–CuNi nanocomposites were examined in heterogeneous catalysis of thermal activated CO oxidation and photoactivated degradation of acid telon blue and direct blue dyes. The nanocomposites are characterized by a closely connected solution combustion synthesized graphene-metal structure with a number of graphene layers from 1 to 3 and fine metal grains sizes of 31 nm (Cu) and 14 nm (CuNi). The experimental data showed the obtained graphene-metal nanocomposites are among the most effective catalysts for CO oxidation with a temperature of 100% conversion of 150 °C and 200 °C for Cu and CuNi containing catalysts, respectively. At the same time, both nanopowders were found inactive for dyes degradation.
  • 其他摘要:Abstract Graphene and its analogs in combination with metal nanopowders are among the most promising catalysts for various industry valuable processes. The newly obtained solution combustion synthesized graphene–Cu and graphene–CuNi nanocomposites were examined in heterogeneous catalysis of thermal activated CO oxidation and photoactivated degradation of acid telon blue and direct blue dyes. The nanocomposites are characterized by a closely connected solution combustion synthesized graphene-metal structure with a number of graphene layers from 1 to 3 and fine metal grains sizes of 31 nm (Cu) and 14 nm (CuNi). The experimental data showed the obtained graphene-metal nanocomposites are among the most effective catalysts for CO oxidation with a temperature of 100% conversion of 150 °C and 200 °C for Cu and CuNi containing catalysts, respectively. At the same time, both nanopowders were found inactive for dyes degradation.
国家哲学社会科学文献中心版权所有