首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Cdc6 disruption leads to centrosome abnormalities and chromosome instability in pancreatic cancer cells
  • 本地全文:下载
  • 作者:Yuna Youn ; Jong-chan Lee ; Jaihwan Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-73474-6
  • 出版社:Springer Nature
  • 摘要:Cell division cycle 6 (Cdc6) plays key roles in regulating DNA replication, and activation and maintenance of cell cycle check points. In addition, Cdc6 exerts oncogenic properties via genomic instability associated with incomplete DNA replication. This study aimed to examine the effects of Cdc6 on pancreatic cancer (PC) cells. Our results showed that Cdc6 expression was higher in clinical PC specimens (based on analysis of the GEPIA database) and cell lines, and the high Cdc6 expression was associated with poorer survival in The Cancer Genome Atlas-PC cohort. In addition, Cdc6-depleted PC cells significantly inhibited cell proliferation and colony formation, delayed G2/M cell cycle progression, and increased expression of p-histone H3 and cyclin A2 levels. These observations could be explained by Cdc6 depletion leading to multipolar and split spindles via centrosome amplification and microtubule disorganization which eventually increases chromosome missegregation. Furthermore, Cdc6-depleted PC cells showed significantly increased apoptosis, which was consistent with increased caspase-9 and caspase-3 activation. Collectively, our results demonstrated that Cdc6-depleted PC cells are arrested in mitosis and eventually undergo cell death by induced multipolar spindles, centrosome aberrations, microtubule disorganization, and chromosome instability. In conclusion, Cdc6 may be a potential biomarker and therapeutic target for PC.
  • 其他摘要:Abstract Cell division cycle 6 ( Cdc6 ) plays key roles in regulating DNA replication, and activation and maintenance of cell cycle check points. In addition, Cdc6 exerts oncogenic properties via genomic instability associated with incomplete DNA replication. This study aimed to examine the effects of Cdc6 on pancreatic cancer (PC) cells. Our results showed that Cdc6 expression was higher in clinical PC specimens (based on analysis of the GEPIA database) and cell lines, and the high Cdc6 expression was associated with poorer survival in The Cancer Genome Atlas-PC cohort. In addition, Cdc6-depleted PC cells significantly inhibited cell proliferation and colony formation, delayed G 2 /M cell cycle progression, and increased expression of p-histone H3 and cyclin A2 levels. These observations could be explained by Cdc6 depletion leading to multipolar and split spindles via centrosome amplification and microtubule disorganization which eventually increases chromosome missegregation. Furthermore, Cdc6-depleted PC cells showed significantly increased apoptosis, which was consistent with increased caspase-9 and caspase-3 activation. Collectively, our results demonstrated that Cdc6-depleted PC cells are arrested in mitosis and eventually undergo cell death by induced multipolar spindles, centrosome aberrations, microtubule disorganization, and chromosome instability. In conclusion, Cdc6 may be a potential biomarker and therapeutic target for PC.
国家哲学社会科学文献中心版权所有