摘要:Lung shape could hold prognostic information for age-related diseases that affect lung tissue mechanics. We sought to quantify mean lung shape, its modes of variation, and shape associations with lung size, age, sex, and Body Mass Index (BMI) in healthy subjects across a seven-decade age span. Volumetric computed tomography from 83 subjects (49 M/34 F, BMI $$24.7 \pm 2.7$$ ) was used to derive two statistical shape models using a principal component analysis. One model included, and the other controlled for, lung volume. Volume made the strongest contribution to shape when it was included. Shape had a strong relationship with age but not sex when volume was controlled for, and BMI had only a small but significant association with shape. The first principal shape mode was associated with decrease in the antero-posterior dimension from base to apex. In older subjects this was rapid and obvious, whereas younger subjects had relatively more constant dimension. A shift of the fissures of both lungs in the basal direction was apparent for the older subjects, consistent with a change in tissue elasticity with age. This study suggests a quantifiable structure-function relationship for the healthy adult lung that can potentially be exploited as a normative description against which abnormal can be compared.
其他摘要:Abstract Lung shape could hold prognostic information for age-related diseases that affect lung tissue mechanics. We sought to quantify mean lung shape, its modes of variation, and shape associations with lung size, age, sex, and Body Mass Index (BMI) in healthy subjects across a seven-decade age span. Volumetric computed tomography from 83 subjects (49 M/34 F, BMI $$24.7 \pm 2.7$$ 24.7 ± 2.7 ) was used to derive two statistical shape models using a principal component analysis. One model included, and the other controlled for, lung volume. Volume made the strongest contribution to shape when it was included. Shape had a strong relationship with age but not sex when volume was controlled for, and BMI had only a small but significant association with shape. The first principal shape mode was associated with decrease in the antero-posterior dimension from base to apex. In older subjects this was rapid and obvious, whereas younger subjects had relatively more constant dimension. A shift of the fissures of both lungs in the basal direction was apparent for the older subjects, consistent with a change in tissue elasticity with age. This study suggests a quantifiable structure-function relationship for the healthy adult lung that can potentially be exploited as a normative description against which abnormal can be compared.