首页    期刊浏览 2025年07月01日 星期二
登录注册

文章基本信息

  • 标题:Angular super-resolution retrieval in small-angle X-ray scattering
  • 本地全文:下载
  • 作者:Benjamin Gutman ; Michael Mrejen ; Gil Shabat
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-73030-2
  • 出版社:Springer Nature
  • 摘要:Small-angle X-ray scattering (SAXS) techniques enable convenient nanoscopic characterization for various systems and conditions. Unlike synchrotron-based setups, lab-based SAXS systems intrinsically suffer from lower X-ray flux and limited angular resolution. Here, we develop a two-step retrieval methodology to enhance the angular resolution for given experimental conditions. Using minute hardware additions, we show that translating the X-ray detector in subpixel steps and modifying the incoming beam shape results in a set of 2D scattering images, which is sufficient for super-resolution SAXS retrieval. The technique is verified experimentally to show superior resolution. Such advantages have a direct impact on the ability to resolve finer nanoscopic structures and can be implemented in most existing SAXS apparatuses both using synchrotron- and laboratory-based sources.
  • 其他摘要:Abstract Small-angle X-ray scattering (SAXS) techniques enable convenient nanoscopic characterization for various systems and conditions. Unlike synchrotron-based setups, lab-based SAXS systems intrinsically suffer from lower X-ray flux and limited angular resolution. Here, we develop a two-step retrieval methodology to enhance the angular resolution for given experimental conditions. Using minute hardware additions, we show that translating the X-ray detector in subpixel steps and modifying the incoming beam shape results in a set of 2D scattering images, which is sufficient for super-resolution SAXS retrieval. The technique is verified experimentally to show superior resolution. Such advantages have a direct impact on the ability to resolve finer nanoscopic structures and can be implemented in most existing SAXS apparatuses both using synchrotron- and laboratory-based sources.
国家哲学社会科学文献中心版权所有