首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Multimodal combination of GC × GC-HRTOFMS and SIFT-MS for asthma phenotyping using exhaled breath
  • 本地全文:下载
  • 作者:Pierre-Hugues Stefanuto ; Delphine Zanella ; Joeri Vercammen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-73408-2
  • 出版社:Springer Nature
  • 摘要:Chronic inflammatory lung diseases impact more than 300 million of people worldwide. Because they are not curable, these diseases have a high impact on both the quality of life of patients and the healthcare budget. The stability of patient condition relies mostly on constant treatment adaptation and lung function monitoring. However, due to the variety of inflammation phenotypes, almost one third of the patients receive an ineffective treatment. To improve phenotyping, we evaluated the complementarity of two techniques for exhaled breath analysis: full resolving comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC × GC-HRTOFMS) and rapid screening selected ion flow tube MS (SIFT-MS). GC × GC-HRTOFMS has a high resolving power and offers a full overview of sample composition, providing deep insights on the ongoing biology. SIFT-MS is usually used for targeted analyses, allowing rapid classification of samples in defined groups. In this study, we used SIFT-MS in a possible untargeted full-scan mode, where it provides pattern-based classification capacity. We analyzed the exhaled breath of 50 asthmatic patients. Both techniques provided good classification accuracy (around 75%), similar to the efficiency of other clinical tools routinely used for asthma phenotyping. Moreover, our study provides useful information regarding the complementarity of the two techniques.
  • 其他摘要:Abstract Chronic inflammatory lung diseases impact more than 300 million of people worldwide. Because they are not curable, these diseases have a high impact on both the quality of life of patients and the healthcare budget. The stability of patient condition relies mostly on constant treatment adaptation and lung function monitoring. However, due to the variety of inflammation phenotypes, almost one third of the patients receive an ineffective treatment. To improve phenotyping, we evaluated the complementarity of two techniques for exhaled breath analysis: full resolving comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC × GC-HRTOFMS) and rapid screening selected ion flow tube MS (SIFT-MS). GC × GC-HRTOFMS has a high resolving power and offers a full overview of sample composition, providing deep insights on the ongoing biology. SIFT-MS is usually used for targeted analyses, allowing rapid classification of samples in defined groups. In this study, we used SIFT-MS in a possible untargeted full-scan mode, where it provides pattern-based classification capacity. We analyzed the exhaled breath of 50 asthmatic patients. Both techniques provided good classification accuracy (around 75%), similar to the efficiency of other clinical tools routinely used for asthma phenotyping. Moreover, our study provides useful information regarding the complementarity of the two techniques.
国家哲学社会科学文献中心版权所有