首页    期刊浏览 2024年07月19日 星期五
登录注册

文章基本信息

  • 标题:Selective nitrate removal from aqueous solutions by a hydrotalcite-like absorbent FeMgMn-LDH
  • 本地全文:下载
  • 作者:Hongguang Zhou ; Youlin Tan ; Wei Gao
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-72845-3
  • 出版社:Springer Nature
  • 摘要:FeMgMn-LDH, a type of potential environmental remediation material, has been synthesized via a co-precipitation method, and its adsorption characteristics for nitrate were investigated in this study. It’s shown that the prepared FeMgMn-LDH is a promising adsorbent for anions removal, which has high buffer capacity (final pH remained between 9 and 10) and high reversibility, and can remove nitrate ions selectively though an anion-sieve effect. The maximum amount of nitrate adsorption is 10.56 N-mg g−1 at 25 ℃. The removal rate of nitrate ions can reach 86.26% with the adsorbent dose of 5 g/L in a real water. The competition order of coexisting anions on nitrate adsorption by FeMgMn-LDH is CO32− > PO43− > SO42−. The negative values of ΔG0 (from − 27.796 to − 26.426 kJ mol−1) and ΔH0 (− 6.678 kJ mol−1) indicate that the nitrate adsorption process on the FeMgMn-LDH is spontaneous and exothermic. The main adsorption mechanisms of nitrate removal from aqueous solutions by FeMgMn-LDH are electrostatic attraction and ion exchange.
  • 其他摘要:Abstract FeMgMn-LDH, a type of potential environmental remediation material, has been synthesized via a co-precipitation method, and its adsorption characteristics for nitrate were investigated in this study. It’s shown that the prepared FeMgMn-LDH is a promising adsorbent for anions removal, which has high buffer capacity (final pH remained between 9 and 10) and high reversibility, and can remove nitrate ions selectively though an anion-sieve effect. The maximum amount of nitrate adsorption is 10.56 N-mg g −1 at 25 ℃. The removal rate of nitrate ions can reach 86.26% with the adsorbent dose of 5 g/L in a real water. The competition order of coexisting anions on nitrate adsorption by FeMgMn-LDH is CO 3 2−  > PO 4 3−  > SO 4 2− . The negative values of ΔG 0 (from − 27.796 to − 26.426 kJ mol −1 ) and ΔH 0 (− 6.678 kJ mol −1 ) indicate that the nitrate adsorption process on the FeMgMn-LDH is spontaneous and exothermic. The main adsorption mechanisms of nitrate removal from aqueous solutions by FeMgMn-LDH are electrostatic attraction and ion exchange.
国家哲学社会科学文献中心版权所有