摘要:Cross-correlation based fisheries stock assessment technique utilized array of multiple acoustic sensors which were equidistant pair. However, at practical implementation of this technique, equal distances among acoustic sensors is sometimes challenging due to different practical phenomenon. Therefore, in this study, we work on this issue and investigated the impact of unequal distances among the acoustic sensors. We found that cross-correlation based technique proved its effectiveness even for the unequal spacing among acoustic sensors. We considered chirp generating species of fish and mammals, i.e., damselfish (Dascyllus aruanus), humpback whales (Megaptera novaeangliae), dugongs (Dugong dugong), etc., species, and three acoustic sensors array for simulation purposes. Some limitations including negligence of multipath interference, assuming the delays to be integer were compromised during simulations.
其他摘要:Abstract Cross-correlation based fisheries stock assessment technique utilized array of multiple acoustic sensors which were equidistant pair. However, at practical implementation of this technique, equal distances among acoustic sensors is sometimes challenging due to different practical phenomenon. Therefore, in this study, we work on this issue and investigated the impact of unequal distances among the acoustic sensors. We found that cross-correlation based technique proved its effectiveness even for the unequal spacing among acoustic sensors. We considered chirp generating species of fish and mammals, i.e., damselfish ( Dascyllus aruanus ), humpback whales ( Megaptera novaeangliae ), dugongs ( Dugong dugong ), etc., species, and three acoustic sensors array for simulation purposes. Some limitations including negligence of multipath interference, assuming the delays to be integer were compromised during simulations.