首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Light-assisted electrospinning monitoring for soft polymeric nanofibers
  • 本地全文:下载
  • 作者:Dario Lunni ; Goffredo Giordano ; Francesca Pignatelli
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-73252-4
  • 出版社:Springer Nature
  • 摘要:A real-time tool to monitor the electrospinning process is fundamental to improve the reproducibility and quality of the resulting nanofibers. Hereby, a novel optical system integrated through coaxial needle is proposed as monitoring tool for electrospinning process. An optical fiber (OF) is inserted in the inner needle, while the external needle is used to feed the polymeric solution (PEO/water) drawn by the process. The light exiting the OF passes through the solution drop at the needle tip and gets coupled to the electrospun fiber (EF) while travelling towards the nanofibers collector. Numerical and analytical models were developed to assess the feasibility and robustness of the light coupling. Experimental tests demonstrated the influence of the process parameters on the EF waveguide properties, in terms of waveguide length (L), and on the nanofibers diameter distribution, in terms of mean $$\widehat{D}$$ and normalized standard deviation $$\chi$$ . Data analysis reveals good correlation between L and $$\widehat{D}, \chi$$ (respectively maximum correlation coefficients of $${\rho }_{L,\widehat{D}}$$ = 0.88 and $${\rho }_{L,\chi }$$ = 0.84), demonstrating the potential for effectively using the proposed light-assisted technology as real-time visual feedback on the process. The developed system can provide an interesting option for monitoring industrial electrospinning systems using multi- or moving needles with impact in the scaling-up of innovative nanofibers for soft systems.
  • 其他摘要:Abstract A real-time tool to monitor the electrospinning process is fundamental to improve the reproducibility and quality of the resulting nanofibers. Hereby, a novel optical system integrated through coaxial needle is proposed as monitoring tool for electrospinning process. An optical fiber (OF) is inserted in the inner needle, while the external needle is used to feed the polymeric solution (PEO/water) drawn by the process. The light exiting the OF passes through the solution drop at the needle tip and gets coupled to the electrospun fiber (EF) while travelling towards the nanofibers collector. Numerical and analytical models were developed to assess the feasibility and robustness of the light coupling. Experimental tests demonstrated the influence of the process parameters on the EF waveguide properties, in terms of waveguide length (L), and on the nanofibers diameter distribution, in terms of mean $$\widehat{D}$$ D ^ and normalized standard deviation $$\chi$$ χ . Data analysis reveals good correlation between L and $$\widehat{D}, \chi$$ D ^ , χ (respectively maximum correlation coefficients of $${\rho }_{L,\widehat{D}}$$ ρ L , D ^ = 0.88 and $${\rho }_{L,\chi }$$ ρ L , χ = 0.84), demonstrating the potential for effectively using the proposed light-assisted technology as real-time visual feedback on the process. The developed system can provide an interesting option for monitoring industrial electrospinning systems using multi- or moving needles with impact in the scaling-up of innovative nanofibers for soft systems.
国家哲学社会科学文献中心版权所有