首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Using machine learning-based analysis for behavioral differentiation between anxiety and depression
  • 本地全文:下载
  • 作者:Thalia Richter ; Barak Fishbain ; Andrey Markus
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-72289-9
  • 出版社:Springer Nature
  • 摘要:Anxiety and depression are distinct—albeit overlapping—psychiatric diseases, currently diagnosed by self-reported-symptoms. This research presents a new diagnostic methodology, which tests rigorously for differences in cognitive biases among subclinical anxious and depressed individuals. 125 participants were divided into four groups based on the levels of their anxiety and depression symptoms. A comprehensive behavioral test battery detected and quantified various cognitive–emotional biases. Advanced machine-learning tools, developed for this study, analyzed these results. These tools detect unique patterns that characterize anxiety versus depression to predict group membership. The prediction model for differentiating between symptomatic participants (i.e., high symptoms of depression, anxiety, or both) compared to the non-symptomatic control group revealed a 71.44% prediction accuracy for the former (sensitivity) and 70.78% for the latter (specificity). 68.07% and 74.18% prediction accuracy was obtained for a two-group model with high depression/anxiety, respectively. The analysis also disclosed which specific behavioral measures contributed to the prediction, pointing to key cognitive mechanisms in anxiety versus depression. These results lay the ground for improved diagnostic instruments and more effective and focused individually-based treatment.
  • 其他摘要:Abstract Anxiety and depression are distinct—albeit overlapping—psychiatric diseases, currently diagnosed by self-reported-symptoms. This research presents a new diagnostic methodology, which tests rigorously for differences in cognitive biases among subclinical anxious and depressed individuals. 125 participants were divided into four groups based on the levels of their anxiety and depression symptoms. A comprehensive behavioral test battery detected and quantified various cognitive–emotional biases. Advanced machine-learning tools, developed for this study, analyzed these results. These tools detect unique patterns that characterize anxiety versus depression to predict group membership. The prediction model for differentiating between symptomatic participants (i.e., high symptoms of depression, anxiety, or both) compared to the non-symptomatic control group revealed a 71.44% prediction accuracy for the former (sensitivity) and 70.78% for the latter (specificity). 68.07% and 74.18% prediction accuracy was obtained for a two-group model with high depression/anxiety, respectively. The analysis also disclosed which specific behavioral measures contributed to the prediction, pointing to key cognitive mechanisms in anxiety versus depression. These results lay the ground for improved diagnostic instruments and more effective and focused individually-based treatment.
国家哲学社会科学文献中心版权所有