首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Nephronophthisis gene products display RNA-binding properties and are recruited to stress granules
  • 本地全文:下载
  • 作者:Luisa Estrada Mallarino ; Christina Engel ; İbrahim Avşar Ilık
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-72905-8
  • 出版社:Springer Nature
  • 摘要:Mutations of cilia-associated molecules cause multiple developmental defects that are collectively termed ciliopathies. However, several ciliary proteins, involved in gating access to the cilium, also assume localizations at other cellular sites including the nucleus, where they participate in DNA damage responses to maintain tissue integrity. Molecular insight into how these molecules execute such diverse functions remains limited. A mass spectrometry screen for ANKS6-interacting proteins suggested an involvement of ANKS6 in RNA processing and/or binding. Comparing the RNA-binding properties of the known RNA-binding protein BICC1 with the three ankyrin-repeat proteins ANKS3, ANKS6 (NPHP16) and INVERSIN (NPHP2) confirmed that certain nephronophthisis (NPH) family members can interact with RNA molecules. We also observed that BICC1 and INVERSIN associate with stress granules in response to translational inhibition. Furthermore, BICC1 recruits ANKS3 and ANKS6 into TIA-1-positive stress granules after exposure to hippuristanol. Our findings uncover a novel function of NPH family members, and provide further evidence that NPH family members together with BICC1 are involved in stress responses to maintain tissue and organ integrity.
  • 其他摘要:Abstract Mutations of cilia-associated molecules cause multiple developmental defects that are collectively termed ciliopathies. However, several ciliary proteins, involved in gating access to the cilium, also assume localizations at other cellular sites including the nucleus, where they participate in DNA damage responses to maintain tissue integrity. Molecular insight into how these molecules execute such diverse functions remains limited. A mass spectrometry screen for ANKS6-interacting proteins suggested an involvement of ANKS6 in RNA processing and/or binding. Comparing the RNA-binding properties of the known RNA-binding protein BICC1 with the three ankyrin-repeat proteins ANKS3, ANKS6 (NPHP16) and INVERSIN (NPHP2) confirmed that certain nephronophthisis (NPH) family members can interact with RNA molecules. We also observed that BICC1 and INVERSIN associate with stress granules in response to translational inhibition. Furthermore, BICC1 recruits ANKS3 and ANKS6 into TIA-1-positive stress granules after exposure to hippuristanol. Our findings uncover a novel function of NPH family members, and provide further evidence that NPH family members together with BICC1 are involved in stress responses to maintain tissue and organ integrity.
国家哲学社会科学文献中心版权所有