首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Measurement of the tilt of a moving domain wall shows precession-free dynamics in compensated ferrimagnets
  • 本地全文:下载
  • 作者:E. Haltz ; J. Sampaio ; S. Krishnia
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-020-73049-5
  • 出版社:Springer Nature
  • 摘要:One fundamental obstacle to efficient ferromagnetic spintronics is magnetic precession, which intrinsically limits the dynamics of magnetic textures. We experimentally demonstrate that this precession vanishes when the net angular momentum is compensated in domain walls driven by spin–orbit torque in a ferrimagnetic GdFeCo/Pt track. We use transverse in-plane fields to provide a robust and parameter-free measurement of the domain wall internal magnetisation angle, demonstrating that, at the angular compensation, the DW tilt is zero, and thus the magnetic precession that caused it is suppressed. Our results highlight the mechanism of faster and more efficient dynamics in materials with multiple spin lattices and vanishing net angular momentum, promising for high-speed, low-power spintronic applications.
  • 其他摘要:Abstract One fundamental obstacle to efficient ferromagnetic spintronics is magnetic precession, which intrinsically limits the dynamics of magnetic textures. We experimentally demonstrate that this precession vanishes when the net angular momentum is compensated in domain walls driven by spin–orbit torque in a ferrimagnetic GdFeCo/Pt track. We use transverse in-plane fields to provide a robust and parameter-free measurement of the domain wall internal magnetisation angle, demonstrating that, at the angular compensation, the DW tilt is zero, and thus the magnetic precession that caused it is suppressed. Our results highlight the mechanism of faster and more efficient dynamics in materials with multiple spin lattices and vanishing net angular momentum, promising for high-speed, low-power spintronic applications.
国家哲学社会科学文献中心版权所有