首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Real-time on-machine observations close to interelectrode gap in a tool-based hybrid laser-electrochemical micromachining process
  • 本地全文:下载
  • 作者:Krishna Kumar Saxena ; Xiaolei Chen ; Maria Rosaria Vetrano
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-73821-7
  • 出版社:Springer Nature
  • 摘要:A tool-based hybrid laser-electrochemical micromachining process involves concurrent application of two process energies i.e. electrochemical and laser in the same machining zone by means of a hybrid tool which serves as an ECM tool as well as a multimode waveguide. It is a relatively novel process finding applications in defect-free machining of difficult-to-cut materials without affecting their microstructure. In order to understand the physical phenomena occurring during this process, in-situ observations are required. Therefore, in this work, a real time observation was carried out of a novel tool-based hybrid laser electrochemical micromachining process. A combination of high-speed imaging and Large Scale Particle Image Velocimetry (LSPIV) was used to visualize the tool-based hybrid laser-ECM process in real time. It also allowed to carry out experimental investigations on the by-products and bubble generation which have a direct effect on process performance in terms of accuracy and efficiency. The real-time on-machine observations are unique of its kind and they will facilitate the understanding of underlying mechanisms governing this hybrid laser-electrochemical micromachining process. This will ultimately help in improving the quality of parts manufactured. This research is also a step forward towards making these physics-based hybrid processes deterministic by employing high-speed imaging in a closed loop control.
  • 其他摘要:Abstract A tool-based hybrid laser-electrochemical micromachining process involves concurrent application of two process energies i.e. electrochemical and laser in the same machining zone by means of a hybrid tool which serves as an ECM tool as well as a multimode waveguide. It is a relatively novel process finding applications in defect-free machining of difficult-to-cut materials without affecting their microstructure. In order to understand the physical phenomena occurring during this process, in-situ observations are required. Therefore, in this work, a real time observation was carried out of a novel tool-based hybrid laser electrochemical micromachining process. A combination of high-speed imaging and Large Scale Particle Image Velocimetry (LSPIV) was used to visualize the tool-based hybrid laser-ECM process in real time. It also allowed to carry out experimental investigations on the by-products and bubble generation which have a direct effect on process performance in terms of accuracy and efficiency. The real-time on-machine observations are unique of its kind and they will facilitate the understanding of underlying mechanisms governing this hybrid laser-electrochemical micromachining process. This will ultimately help in improving the quality of parts manufactured. This research is also a step forward towards making these physics-based hybrid processes deterministic by employing high-speed imaging in a closed loop control.
国家哲学社会科学文献中心版权所有