首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Widespread Torix Rickettsia in New Zealand amphipods and the use of blocking primers to rescue host COI sequences
  • 本地全文:下载
  • 作者:Eunji Park ; Robert Poulin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-73986-1
  • 出版社:Springer Nature
  • 摘要:Endosymbionts and intracellular parasites are common in arthropod hosts. As a consequence, (co)amplification of untargeted bacterial sequences has been occasionally reported as a common problem in DNA barcoding. While identifying amphipod species with universal COI primers, we unexpectedly detected rickettsial endosymbionts belonging to the Torix group. To map the distribution and diversity of Rickettsia species among amphipod hosts, we conducted a nationwide molecular screening of seven families of New Zealand freshwater amphipods. In addition to uncovering a diversity of Torix Rickettsia species across multiple amphipod populations from three different families, our research indicates that: (1) detecting Torix Rickettsia with universal primers is not uncommon, (2) obtaining ‘Rickettsia COI sequences’ from many host individuals is highly likely when a population is infected, and (3) obtaining ‘host COI’ may not be possible with a conventional PCR if an individual is infected. Because Rickettsia COI is highly conserved across diverse host taxa, we were able to design blocking primers that can be used in a wide range of host species infected with Torix Rickettsia. We propose the use of blocking primers to circumvent problems caused by unwanted amplification of Rickettsia and to obtain targeted host COI sequences for DNA barcoding, population genetics, and phylogeographic studies.
  • 其他摘要:Abstract Endosymbionts and intracellular parasites are common in arthropod hosts. As a consequence, (co)amplification of untargeted bacterial sequences has been occasionally reported as a common problem in DNA barcoding. While identifying amphipod species with universal COI primers, we unexpectedly detected rickettsial endosymbionts belonging to the Torix group. To map the distribution and diversity of Rickettsia species among amphipod hosts, we conducted a nationwide molecular screening of seven families of New Zealand freshwater amphipods. In addition to uncovering a diversity of Torix Rickettsia species across multiple amphipod populations from three different families, our research indicates that: (1) detecting Torix Rickettsia with universal primers is not uncommon, (2) obtaining ‘ Rickettsia COI sequences’ from many host individuals is highly likely when a population is infected, and (3) obtaining ‘host COI’ may not be possible with a conventional PCR if an individual is infected. Because Rickettsia COI is highly conserved across diverse host taxa, we were able to design blocking primers that can be used in a wide range of host species infected with Torix Rickettsia . We propose the use of blocking primers to circumvent problems caused by unwanted amplification of Rickettsia and to obtain targeted host COI sequences for DNA barcoding, population genetics, and phylogeographic studies.
国家哲学社会科学文献中心版权所有