首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Addressing the “minimum parking” problem for on-demand mobility
  • 本地全文:下载
  • 作者:Dániel Kondor ; Paolo Santi ; Diem-Trinh Le
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-71867-1
  • 出版社:Springer Nature
  • 摘要:Parking infrastructure is pervasive and occupies large swaths of land in cities. However, on-demand (OD) mobility has started reducing parking needs in urban areas around the world. This trend is expected to grow significantly with the advent of autonomous driving, which might render on-demand mobility predominant. Recent studies have started looking at expected parking reductions with on-demand mobility, but a systematic framework is still lacking. In this paper, we apply a data-driven methodology based on shareability networks to address what we call the “minimum parking” problem: what is the minimum parking infrastructure needed in a city for given on-demand mobility needs? While solving the problem, we also identify a critical tradeoff between two public policy goals: less parking means increased vehicle travel from deadheading between trips. By applying our methodology to the city of Singapore we discover that parking infrastructure reduction of up to 86% is possible, but at the expense of a 24% increase in traffic measured as vehicle kilometers travelled (VKT). However, a more modest 57% reduction in parking is achievable with only a 1.3% increase in VKT. We find that the tradeoff between parking and traffic obeys an inverse exponential law which is invariant with the size of the vehicle fleet. Finally, we analyze parking requirements due to passenger pick-ups and show that increasing convenience produces a substantial increase in parking for passenger pickup/dropoff. The above findings can inform policy-makers, mobility operators, and society at large on the tradeoffs required in the transition towards pervasive on-demand mobility.
  • 其他摘要:Abstract Parking infrastructure is pervasive and occupies large swaths of land in cities. However, on-demand (OD) mobility has started reducing parking needs in urban areas around the world. This trend is expected to grow significantly with the advent of autonomous driving, which might render on-demand mobility predominant. Recent studies have started looking at expected parking reductions with on-demand mobility, but a systematic framework is still lacking. In this paper, we apply a data-driven methodology based on shareability networks to address what we call the “minimum parking” problem: what is the minimum parking infrastructure needed in a city for given on-demand mobility needs? While solving the problem, we also identify a critical tradeoff between two public policy goals: less parking means increased vehicle travel from deadheading between trips. By applying our methodology to the city of Singapore we discover that parking infrastructure reduction of up to 86% is possible, but at the expense of a 24% increase in traffic measured as vehicle kilometers travelled (VKT). However, a more modest 57% reduction in parking is achievable with only a 1.3% increase in VKT. We find that the tradeoff between parking and traffic obeys an inverse exponential law which is invariant with the size of the vehicle fleet. Finally, we analyze parking requirements due to passenger pick-ups and show that increasing convenience produces a substantial increase in parking for passenger pickup/dropoff. The above findings can inform policy-makers, mobility operators, and society at large on the tradeoffs required in the transition towards pervasive on-demand mobility.
国家哲学社会科学文献中心版权所有