首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Monolithic focus-tunable lens technology enabled by disk-type dielectric-elastomer actuators
  • 本地全文:下载
  • 作者:Bong Je Park ; Suntak Park ; Meejeong Choi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-6
  • DOI:10.1038/s41598-020-73666-0
  • 出版社:Springer Nature
  • 摘要:We propose a monolithic focus-tunable lens structure based on the dielectric-elastomer actuator (DEA) technology. In our focus-tunable lens, a soft lens and radial in-plane actuator mimicking the ocular focal-tuning mechanism are constructed in a single body of an optimized dielectric-elastomer film. We provide device fabrication methods including elastomer synthesis, structure formation, and packaging process steps. Performance test measurements show 93% focal tunability and 7 ms response time under static and dynamic electrical driving conditions, respectively. These performance characteristics are substantially enhanced from the previous polylithic DEA tunable lens by a factor 1.4 for the focal tunability and a factor 9.4 for the dynamic tuning-speed limit. Therefore, we obtain greatly enhanced focal tuning control in a remarkably simple and compact device structure.
  • 其他摘要:Abstract We propose a monolithic focus-tunable lens structure based on the dielectric-elastomer actuator (DEA) technology. In our focus-tunable lens, a soft lens and radial in-plane actuator mimicking the ocular focal-tuning mechanism are constructed in a single body of an optimized dielectric-elastomer film. We provide device fabrication methods including elastomer synthesis, structure formation, and packaging process steps. Performance test measurements show 93% focal tunability and 7 ms response time under static and dynamic electrical driving conditions, respectively. These performance characteristics are substantially enhanced from the previous polylithic DEA tunable lens by a factor 1.4 for the focal tunability and a factor 9.4 for the dynamic tuning-speed limit. Therefore, we obtain greatly enhanced focal tuning control in a remarkably simple and compact device structure.
国家哲学社会科学文献中心版权所有