首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Valley-selective energy transfer between quantum dots in atomically thin semiconductors
  • 本地全文:下载
  • 作者:Anvar S. Baimuratov ; Alexander Högele
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-73688-8
  • 出版社:Springer Nature
  • 摘要:In monolayers of transition metal dichalcogenides the nonlocal nature of the effective dielectric screening leads to large binding energies of excitons. Additional lateral confinement gives rise to exciton localization in quantum dots. By assuming parabolic confinement for both the electron and the hole, we derive model wave functions for the relative and the center-of-mass motions of electron–hole pairs, and investigate theoretically resonant energy transfer among excitons localized in two neighboring quantum dots. We quantify the probability of energy transfer for a direct-gap transition by assuming that the interaction between two quantum dots is described by a Coulomb potential, which allows us to include all relevant multipole terms of the interaction. We demonstrate the structural control of the valley-selective energy transfer between quantum dots.
  • 其他摘要:Abstract In monolayers of transition metal dichalcogenides the nonlocal nature of the effective dielectric screening leads to large binding energies of excitons. Additional lateral confinement gives rise to exciton localization in quantum dots. By assuming parabolic confinement for both the electron and the hole, we derive model wave functions for the relative and the center-of-mass motions of electron–hole pairs, and investigate theoretically resonant energy transfer among excitons localized in two neighboring quantum dots. We quantify the probability of energy transfer for a direct-gap transition by assuming that the interaction between two quantum dots is described by a Coulomb potential, which allows us to include all relevant multipole terms of the interaction. We demonstrate the structural control of the valley-selective energy transfer between quantum dots.
国家哲学社会科学文献中心版权所有