首页    期刊浏览 2024年07月22日 星期一
登录注册

文章基本信息

  • 标题:Direct visualization of the extracellular binding structure of E-cadherins in liquid
  • 本地全文:下载
  • 作者:Teiko Shibata-Seki ; Masato Nagaoka ; Mitsuaki Goto
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-72517-2
  • 出版社:Springer Nature
  • 摘要:E-cadherin is a key Ca-dependent cell adhesion molecule, which is expressed on many cell surfaces and involved in cell morphogenesis, embryonic development, EMT, etc. The fusion protein E-cad-Fc consists of the extracellular domain of E-cadherin and the IgG Fc domain. On plates coated with this chimeric protein, ES/iPS cells are cultivated particularly well and induced to differentiate. The cells adhere to the plate via E-cad-Fc in the presence of Ca2 and detach by a chelating agent. For the purpose of clarifying the structures of E-cad-Fc in the presence and absence of Ca2 , we analyzed the molecular structure of E-cad-Fc by AFM in liquid. Our AFM observations revealed a rod-like structure of the entire extracellular domain of E-cad-Fc in the presence of Ca2 as well as trans-binding of E-cad-Fc with adjacent molecules, which may be the first, direct confirmation of trans-dimerization of E-cadherin. The observed structures were in good agreement with an X-ray crystallographic model. Furthermore, we succeeded in visualizing the changes in the rod-like structure of the EC domains with and without calcium. The biomatrix surface plays an important role in cell culture, so the analysis of its structure and function may help promote cell engineering based on cell recognition.
  • 其他摘要:Abstract E-cadherin is a key Ca-dependent cell adhesion molecule, which is expressed on many cell surfaces and involved in cell morphogenesis, embryonic development, EMT, etc. The fusion protein E-cad-Fc consists of the extracellular domain of E-cadherin and the IgG Fc domain. On plates coated with this chimeric protein, ES/iPS cells are cultivated particularly well and induced to differentiate. The cells adhere to the plate via E-cad-Fc in the presence of Ca 2 and detach by a chelating agent. For the purpose of clarifying the structures of E-cad-Fc in the presence and absence of Ca 2 , we analyzed the molecular structure of E-cad-Fc by AFM in liquid. Our AFM observations revealed a rod-like structure of the entire extracellular domain of E-cad-Fc in the presence of Ca 2 as well as trans -binding of E-cad-Fc with adjacent molecules, which may be the first, direct confirmation of trans -dimerization of E-cadherin. The observed structures were in good agreement with an X-ray crystallographic model. Furthermore, we succeeded in visualizing the changes in the rod-like structure of the EC domains with and without calcium. The biomatrix surface plays an important role in cell culture, so the analysis of its structure and function may help promote cell engineering based on cell recognition.
国家哲学社会科学文献中心版权所有