首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse
  • 本地全文:下载
  • 作者:Kamal Usman ; Mohammed H. Abu-Dieyeh ; Nabil Zouari
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-73621-z
  • 出版社:Springer Nature
  • 摘要:Lead (Pb) is the second most toxic metal on Earth and is toxic to humans and other living things. In plants, Pb commonly inhibits growth when it is at a concentration in the soil of 30 mg/kg or more but several Pb tolerant plants have been reported. However, few studies have focused on plant response to Pb exposure, particularly at concentrations higher than 30 mg/kg. The assessment and evaluation of metal dose-dependent plant responses will assist in future phytoremediation studies. Therefore, this work documents the Pb concentration-dependent antioxidative response in Tetraena qataranse. Young seedlings were irrigated with 0, 25, 50, and 100 mg/L Pb every 48 h for seven weeks under greenhouse conditions. A phytotoxicity test showed that at the lowest treatment concentration, Pb stimulates growth. However, at 100 mg/L (1600 mg/kg Pb in the growth medium at harvest), the metal disrupted healthy growth in T. qataranse, particularly root development. Metal accumulation in the root was higher (up to 2784 mg/kg) than that of the shoot (1141.6 mg/kg). Activity assays of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) showed a progressive increase in enzymatic activities due to Pb treatment. Together, the results of this study suggest that T. qataranse is a Pb hyperaccumulator. Increased antioxidant enzyme activity was essential to maintaining cellular homeostasis and assisted in the arid plant’s tolerance to Pb stress.
  • 其他摘要:Abstract Lead (Pb) is the second most toxic metal on Earth and is toxic to humans and other living things. In plants, Pb commonly inhibits growth when it is at a concentration in the soil of 30 mg/kg or more but several Pb tolerant plants have been reported. However, few studies have focused on plant response to Pb exposure, particularly at concentrations higher than 30 mg/kg. The assessment and evaluation of metal dose-dependent plant responses will assist in future phytoremediation studies. Therefore, this work documents the Pb concentration-dependent antioxidative response in Tetraena qataranse. Young seedlings were irrigated with 0, 25, 50, and 100 mg/L Pb every 48 h for seven weeks under greenhouse conditions. A phytotoxicity test showed that at the lowest treatment concentration, Pb stimulates growth. However, at 100 mg/L (1600 mg/kg Pb in the growth medium at harvest), the metal disrupted healthy growth in T. qataranse , particularly root development. Metal accumulation in the root was higher (up to 2784 mg/kg) than that of the shoot (1141.6 mg/kg). Activity assays of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) showed a progressive increase in enzymatic activities due to Pb treatment. Together, the results of this study suggest that T. qataranse is a Pb hyperaccumulator. Increased antioxidant enzyme activity was essential to maintaining cellular homeostasis and assisted in the arid plant’s tolerance to Pb stress.
国家哲学社会科学文献中心版权所有