首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Optoelectronic nose based on an origami paper sensor for selective detection of pesticide aerosols
  • 本地全文:下载
  • 作者:Mohammad Mahdi Bordbar ; Tien-Anh Nguyen ; Anh Quang Tran
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-74509-8
  • 出版社:Springer Nature
  • 摘要:This study introduces an applicable colorimetric sensor array for the detection of pesticides in the vapor phase. The array consisted of six metal nanoparticles spotted on the piece of filter paper. 3D-origami pattern was used for the fabrication of a paper-based sensor to decrease the effect of the nanoparticles leaching after exposure to analytes. Exposure to pesticide aerosols caused changes in the color of the array due to the aggregation of nanoparticles. These changes provided selective responses to thion pesticides such as malathion, parathion, chlorpyrifos, and diazinon. The sensing assay could also differentiate between aliphatic and aromatic thions and discriminate amine-containing compounds from the other studied analytes. These finding results are clearly confirmed by both visual detection and multivariate statistical methods. The proposed sensor was successfully developed for the quantitative measurement of pesticide aerosols at a very low concentration. The limit of detection of this method determined for malathion, parathion, chlorpyrifos and diazinon were 58.0, 103.0, 81.0 and 117.0, respectively. Moreover, the array could be employed to simultaneously analyze four studied pesticides. The statistcal results confirmed that the method has high performance for concurrent detection of thions as a major air pollutant without the interference of other species.
  • 其他摘要:Abstract This study introduces an applicable colorimetric sensor array for the detection of pesticides in the vapor phase. The array consisted of six metal nanoparticles spotted on the piece of filter paper. 3D-origami pattern was used for the fabrication of a paper-based sensor to decrease the effect of the nanoparticles leaching after exposure to analytes. Exposure to pesticide aerosols caused changes in the color of the array due to the aggregation of nanoparticles. These changes provided selective responses to thion pesticides such as malathion, parathion, chlorpyrifos, and diazinon. The sensing assay could also differentiate between aliphatic and aromatic thions and discriminate amine-containing compounds from the other studied analytes. These finding results are clearly confirmed by both visual detection and multivariate statistical methods. The proposed sensor was successfully developed for the quantitative measurement of pesticide aerosols at a very low concentration. The limit of detection of this method determined for malathion, parathion, chlorpyrifos and diazinon were 58.0, 103.0, 81.0 and 117.0, respectively. Moreover, the array could be employed to simultaneously analyze four studied pesticides. The statistcal results confirmed that the method has high performance for concurrent detection of thions as a major air pollutant without the interference of other species.
国家哲学社会科学文献中心版权所有