首页    期刊浏览 2025年04月19日 星期六
登录注册

文章基本信息

  • 标题:Discovering spatial interaction patterns of near repeat crime by spatial association rules mining
  • 本地全文:下载
  • 作者:Zhanjun He ; Liufeng Tao ; Zhong Xie
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-74248-w
  • 出版社:Springer Nature
  • 摘要:Urban crime incidents always exhibit a structure of spatio-temporal dependence. Exploration of the spatio-temporal interactions of crime incidents is critical to understanding the occurrence mechanism and spatial transmission characteristics of crime occurrences, therefore facilitating the determination of policing practices. Although previous researches have repeatedly demonstrated that the crime incidents are spatially clustered, the anisotropic characteristics of spatial interaction has not been fully considered and the detailed spatial transmission of crime incidents has rarely been explored. To better understand the spatio-temporal interaction patterns of crime occurrence, this study proposes a new spatial association mining approach to discover significant spatial transmission routes and related high flow regions. First, all near repeat crime pairs are identified based on spatio-temporal proximity. Then, these links between close pairs are simplified by spatial aggregation on spatial grids. Based on that, measures of the spatio-temporal interactions are defined and a spatial association pattern mining approach is developed to discover significant spatial interaction patterns. Finally, the relationship between significant spatial transmission patterns and road network structure is analyzed. The experimental results demonstrate that our approach is able to effectively discover spatial transmission patterns from massive crime incidents data. Our results are expected to provide effective guidance for crime pattern analysis and even crime prevention.
  • 其他摘要:Abstract Urban crime incidents always exhibit a structure of spatio-temporal dependence. Exploration of the spatio-temporal interactions of crime incidents is critical to understanding the occurrence mechanism and spatial transmission characteristics of crime occurrences, therefore facilitating the determination of policing practices. Although previous researches have repeatedly demonstrated that the crime incidents are spatially clustered, the anisotropic characteristics of spatial interaction has not been fully considered and the detailed spatial transmission of crime incidents has rarely been explored. To better understand the spatio-temporal interaction patterns of crime occurrence, this study proposes a new spatial association mining approach to discover significant spatial transmission routes and related high flow regions. First, all near repeat crime pairs are identified based on spatio-temporal proximity. Then, these links between close pairs are simplified by spatial aggregation on spatial grids. Based on that, measures of the spatio-temporal interactions are defined and a spatial association pattern mining approach is developed to discover significant spatial interaction patterns. Finally, the relationship between significant spatial transmission patterns and road network structure is analyzed. The experimental results demonstrate that our approach is able to effectively discover spatial transmission patterns from massive crime incidents data. Our results are expected to provide effective guidance for crime pattern analysis and even crime prevention.
国家哲学社会科学文献中心版权所有