首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Understanding deep learning in land use classification based on Sentinel-2 time series
  • 本地全文:下载
  • 作者:Manuel Campos-Taberner ; Francisco Javier García-Haro ; Beatriz Martínez
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-74215-5
  • 出版社:Springer Nature
  • 摘要:The use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims to deepen the understanding of a recurrent neural network for land use classification based on Sentinel-2 time series in the context of the European Common Agricultural Policy (CAP). This permits to address the relevance of predictors in the classification process leading to an improved understanding of the behaviour of the network. The conducted analysis demonstrates that the red and near infrared Sentinel-2 bands convey the most useful information. With respect to the temporal information, the features derived from summer acquisitions were the most influential. These results contribute to the understanding of models used for decision making in the CAP to accomplish the European Green Deal (EGD) designed in order to counteract climate change, to protect biodiversity and ecosystems, and to ensure a fair economic return for farmers.
  • 其他摘要:Abstract The use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims to deepen the understanding of a recurrent neural network for land use classification based on Sentinel-2 time series in the context of the European Common Agricultural Policy (CAP). This permits to address the relevance of predictors in the classification process leading to an improved understanding of the behaviour of the network. The conducted analysis demonstrates that the red and near infrared Sentinel-2 bands convey the most useful information. With respect to the temporal information, the features derived from summer acquisitions were the most influential. These results contribute to the understanding of models used for decision making in the CAP to accomplish the European Green Deal (EGD) designed in order to counteract climate change, to protect biodiversity and ecosystems, and to ensure a fair economic return for farmers.
国家哲学社会科学文献中心版权所有