首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:The influences of low protein diet on the intestinal microbiota of mice
  • 本地全文:下载
  • 作者:Hiroaki Masuoka ; Wataru Suda ; Eriko Tomitsuka
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-74122-9
  • 出版社:Springer Nature
  • 摘要:Recent research suggests that protein deficiency symptoms are influenced by the intestinal microbiota. We investigated the influence of low protein diet on composition of the intestinal microbiota through animal experiments. Specific pathogen-free (SPF) mice were fed one of four diets (3, 6, 9, or 12% protein) for 4 weeks (n = 5 per diet). Mice fed the 3% protein diet showed protein deficiency symptoms such as weight loss and low level of blood urea nitrogen concentration in their serum. The intestinal microbiota of mice in the 3% and 12% protein diet groups at day 0, 7, 14, 21 and 28 were investigated by 16S rRNA gene sequencing, which revealed differences in the microbiota. In the 3% protein diet group, a greater abundance of urease producing bacterial species was detected across the duration of the study. In the 12% diet protein group, increases of abundance of Streptococcaceae and Clostridiales families was detected. These results suggest that protein deficiency may be associated with shifts in intestinal microbiota.
  • 其他摘要:Abstract Recent research suggests that protein deficiency symptoms are influenced by the intestinal microbiota. We investigated the influence of low protein diet on composition of the intestinal microbiota through animal experiments. Specific pathogen-free (SPF) mice were fed one of four diets (3, 6, 9, or 12% protein) for 4 weeks (n = 5 per diet). Mice fed the 3% protein diet showed protein deficiency symptoms such as weight loss and low level of blood urea nitrogen concentration in their serum. The intestinal microbiota of mice in the 3% and 12% protein diet groups at day 0, 7, 14, 21 and 28 were investigated by 16S rRNA gene sequencing, which revealed differences in the microbiota. In the 3% protein diet group, a greater abundance of urease producing bacterial species was detected across the duration of the study. In the 12% diet protein group, increases of abundance of Streptococcaceae and Clostridiales families was detected. These results suggest that protein deficiency may be associated with shifts in intestinal microbiota.
国家哲学社会科学文献中心版权所有